Myostatin facilitates slow and inhibits fast myosin heavy chain expression during myogenic differentiation.
نویسندگان
چکیده
Skeletal muscles in the limb and body trunk are composed of heterogeneous myofibers expressing different isoforms of myosin heavy chain (Myh), including type I (slow, Myh7), IIA (intermediate, Myh2), IIX (fast, Myh1), and IIB (very fast, Myh4). While the contraction force and speed of a muscle are known to be determined by the relative abundance of myofibers expressing each Myh isoform, it is unclear how specific combinations of myofiber types are formed and regulated at the cellular and molecular level. We report here that myostatin (Mstn) positively regulates slow but negatively regulates fast Myh isoforms. Mstn was expressed at higher levels in the fast muscle myoblasts and myofibers than in the slow muscle counterparts. Interestingly, Mstn knockout led to a shift of Myh towards faster isoforms, suggesting an inhibitory role of Mstn in fast Myh expression. Consistently, when induced to differentiate, Mstn null myoblasts formed myotubes preferentially expressing fast Myh. Conversely, treatment of myoblasts with a recombinant Mstn protein upregulated Myh7 but downregulated Myh4 gene expression in newly formed myotubes. Importantly, both Mstn antibody and soluble activin type 2B receptor inhibited slow Myh7 and promoted fast Myh4 expression, indicating that myostatin acts through canonical activin receptor to regulate the expression of Myh genes. These results demonstrate a role of myostatin in the specification of myofiber types during myogenic differentiation.
منابع مشابه
Myostatin preferentially down-regulates the expression of fast 2x myosin heavy chain in cattle
Myostatin is involved in an inhibitor of muscular growth and differentiation. Myoblasts derived from double-muscled Japanese shorthorn cattle (DM myoblasts) with absence of functional myostatin had higher abilities to proliferate and differentiate than myoblasts derived from normal-muscled cattle (NM myoblasts). In DM myoblasts, mRNA expressions of fetal myosin heavy chain (MyHC) in growth medi...
متن کاملPrdm1 (Blimp-1) and the Expression of Fast and Slow Myosin Heavy Chain Isoforms during Avian Myogenesis In Vitro
BACKGROUND Multiple types of fast and slow skeletal muscle fibers form during early embryogenesis in vertebrates. In zebrafish, formation of the earliest slow myofibers in fin muscles requires expression of the zinc-finger transcriptional repressor Prdm1 (also known as Blimp1). To further understand how the role of Prdm1 in early myogenesis may vary through evolution and during development, we ...
متن کاملLipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α
BACKGROUND Circulating lipopolysaccharide (LPS) concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of m...
متن کاملDual Roles of Palladin Protein in In Vitro Myogenesis: Inhibition of Early Induction but Promotion of Myotube Maturation
Palladin is a microfilament-associated phosphoprotein whose function in skeletal muscle has rarely been studied. Therefore, we investigate whether myogenesis is influenced by the depletion of palladin expression known to interfere with the actin cytoskeleton dynamic required for skeletal muscle differentiation. The inhibition of palladin in C2C12 myoblasts leads to precocious myogenic different...
متن کاملCARP, a Myostatin-downregulated Gene in CFM Cells, Is a Novel Essential Positive Regulator of Myogenesis
Myostatin, a member of the TGF-β superfamily, has been shown to act as a negative regulator of myogenesis. Although its role in myogenesis has been clearly documented through genetic analysis, few gene cascades that respond to myostatin signaling and regulate myogenesis have been characterized, especially in avian species. In a previous study, we screened for such genes in chicken fetal myoblas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 426 1 شماره
صفحات -
تاریخ انتشار 2012